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Severe asthma: inflammation
SUMMARY. Severe asthma is a heterogeneous disease. Identifica-
tion of specific sub-phenotypes of asthma may further improve our 
understanding of its pathophysiology. The genetic and environ-
mental elements that may be important in the development of the 
disease are poorly understood, but it appears that the pathophysi-
ological background of severe asthma includes both allergic and 
non-allergic elements. Inflammatory cells are usually present and 
activated in the airways of patients with severe asthma, and persist 
despite treatment, but their relevance to lack of asthma control and 
disease severity is largely unknown. Histopathological studies of 
severe asthma suggest that 1/2 to 2/3 of patients with severe asthma 
have persistent large airway tissue eosinophils, despite continued 
administration of high-dose systemic and inhaled steroids. Severe 
asthma has also been associated with neutrophilic inflammation, but 
the precise role of neutrophils is not yet clear. Up to 50% of patients 
with severe asthma, however, show no evidence of increased airway 
inflammation. “Steroid resistance” may occur at several levels, not 
all of which are related to lack of effect of steroids on inflammation. 
It appears that the factors leading to the development of severe 
asthma are complex and the disease is probably a mixture of various 
syndromes that have different elements, but also share similarities 
at the pathophysiological level. A better understanding of the im-
munological and histopathological phenotypes of severe asthma 
should enhance our ability both to understand the pathogenesis of 
these syndromes and to improve our therapeutic approach, leading 
to better targeting of both current and novel forms of treatment. 
Pneumon 2011, 24(3):306-313. 

InTrodUcTIon

Asthma is a chronic inflammatory airways disease with variable but, in 
most patients, fully reversible airways obstruction. Persistent airflow limi-
tation, however, can develop in a subgroup of patients with asthma who 
have no significant history of smoking, in spite of optimal treatment.1-6 The 
aetiology of persistent airflow limitation in asthma is still unknown, although 
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most investigators assume that such loss of lung function 
is causally related to persistent inflammatory processes 
in the airway wall.7,8 It is postulated that the persistence 
of airway inflammation in severe asthma may result from 
deficiencies in the endogenous homeostatic processes 
that promote resolution of inflammation. A lower capacity 
for the biosynthesis of lipoxins, which are physiologi-
cal endogenously derived protective signals, has been 
linked to severe asthma.9,10 The studies from the Severe 
Asthma Research Program (SARP) confirm the presence 
of lipoxin underproduction and greater oxidant stress in 
severe asthma.11,12 In addition, alveolar macrophages from 
individuals with severe asthma show decreased produc-
tion of other potentially protective mediators, including 
prostaglandin (PG)E2 and 15-hydroxyeicosatetraenoic 
acid (15-HETE), and also defective apoptotic inflamma-
tory cell uptake.13

Markers of apoptosis, such as Bcl-2, are high in indi-
viduals with asthma, while markers of proliferation and 
activation, such as proliferating cell nuclear antigens, 
nuclear factor-kB and CD40-L, show increased expres-
sion in corticosteroid-dependent asthma.14 Neurogenic 
mechanisms contribute to inflammation in asthma15 but 
their role in severe asthma needs to be further explored.

Inflammatory cells are usually present and activated 
in the airways in severe asthma and persist despite treat-
ment, but their relevance to lack of control and disease 
severity is largely unknown. These cells include not only 
eosinophils and neutrophils, but also T-lymphocytes, mast 
cells, macrophages and airway structural cells, which are 
also crucially involved in the inflammatory reaction and 
remodelling that take place in asthma (Figure 1). Although 
it is accepted that asthma is characterized by eosinophilic 
infiltration, inflammatory phenotypes of severe asthma 
can be characterized by the persistence of eosinophilic 
or neutrophilic infiltration, or by the absence of inflam-
matory infiltration (paucigranulocytic).16,17

Physiological and histopathological data suggest that 
the inflammatory changes involve the lung periphery to 
the same extent as the more proximal airways. Although 
the exact relationship with disease severity is not yet 
completely understood, autopsy studies have provided 
evidence that both increased inflammation and wall 
thickening in patients who died of asthma, may have 
contributed to instability of the disease, poor control and 
resistance to treatment.18,19 Studies of living patients with 
asthma suggest that the contribution to disease sever-
ity of distal lung inflammation may be equally or even 
more important than that of proximal inflammation.20,21 

Evidence of increased inflammatory cell recruitment to 
the small airway compartment compared to the medium 
or large airways has been shown in patients with severe 
asthma. The distribution of inflammatory cells may also 
be different in the distal lung, with an increase in mast 
cells, and specifically chymase-positive mast cells, in the 
small airway outer wall and alveolar attachments.19,22

Various possible ways of classifying phenotypes of 
severe asthma have been proposed, including eosinophilic 
versus non-eosinophilic asthma, intrinsic versus extrinsic 
asthma, brittle versus stable airflow limitation, early onset 
versus late onset asthma, and aspirin-sensitive asthma. 
There is reasonable supporting evidence for the presence 
of at least four general severe asthma phenotypes.

FigURe 1. Photomicrographs showing a bronchiole from a 
subject who died during an asthma attack. a) Luminal occlu-
sion caused by muscle constriction, thickening of the airway 
wall, increased smooth muscle mass and marked inflammatory 
process in the airway wall, characterized mainly by eosinophils. 
b) Detail from a). The distribution of the inflammatory process 
is more obvious: there is a greater density of eosinophils in 
the area outside the smooth muscle (“outer” region) than in 
that inside (“inner”region). (Haematoxylin and eosin staining). 
(Adapted from ref. 17).
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I. Eosinophilic phenotype
Histopathological studies of severe asthma suggest 

that 1/2 to 2/3 of patients with severe asthma have per-
sistent large airway tissue eosinophils, despite admin-
istration of continued high-dose systemic and inhaled 
steroids. These patients have an increase in the numbers 
of CD3+, CD4+ and CD8+Tcells, and clinically they have 
a higher number of exacerbations and near fatal events. 
Synek et al23 reported increased numbers of eosinophils 
and epithelial CD3+cells in the large, but not in the small 
airways in fatal asthma, compared with mild-to-moderate 
asthma cases that died from non-respiratory causes. The 
presence of eosinophils, as measured by examination of 
sputum, bronchoalveolar lavage (BAL), bronchial biopsy 
or exhaled nitric oxide, (NO) may represent a specific 
subtype of severe asthma characterized by a higher level 
of active symptoms, lower FEV1 and a greater likelihood 
of exacerbations and near-fatal events, than a subtype 
without eosinophils.16,24-26

The factors controlling eosinophilic inflammation 
in severe asthma are not clear. While interleukin (IL)-5, 
eotaxin and other mediators may promote eosinophilic 
infiltration, there is no greater up-regulation of these 
specific chemo-attractants in severe eosinophilic asthma 
compared with the milder forms of the disease.27 For exam-
ple, IL-4 or IL-13 appear to be elevated in both atopic and 
non-atopic forms of mild asthma,28 while neither IL-4 nor 
IL-13 has been definitively shown to increase in relation 
to disease severity or eosinophilic disease. Conversely, 
in an analysis of BAL cells or tissue-derived IL-4 or IL-13 
mRNA and protein, lower levels were found in patients 
with severe (i.e., steroid-treated) asthma than in control 
subjects with milder asthma.29

Nevertheless, eosinophilic inflammation may persist 
and have an impact on structural changes of the airways.30 
For instance, patients with severe asthma and persistent 
eosinophilia have been shown to exhibit higher levels of 
transforming growth factor (TGF) (specifically, TGF-β2)16,22,31 
and a thicker subepithelial basement membrane (SBM), 
than those without eosinophilia.16

The differentiation between severe asthma subtypes 
by the presence or absence of eosinophils has been ap-
plied to early- and late-onset severe asthma.32 Persistent 
eosinophilia appears to be more prevalent in late-onset 
than in early-onset disease, despite similar high-dose 
corticosteroid use. In early-onset disease, increases in 
eosinophils are associated with increases in T lymphocytes 
and mast cells, whereas late-onset disease with eosinophils 

has little evidence of involvement of other inflammatory 
cell types (Figure 2).33 Late-onset disease is characterized 
additionally by higher levels of cysteinyl-leukotrienes 
than found in early disease, even when controlling for 
the numbers of eosinophils present.

II. Neutrophilic phenotype
Severe asthma may be associated with neutrophilic 

inflammation, but the precise role of neutrophils is not 
clear. The increase in neutrophils does not always exclude 
the absence of eosinophils, and the two cell types may 
be present in tissue concomitantly.16,34 This increase in 
neutrophils has been observed in sputum, BAL and biopsy 
studies from patients with severe/difficult-to-control 
asthma on high doses of inhaled/oral steroids.35 It is pos-
sible that the neutrophilia in steroid dependent asthma 
is due to the corticosteroid therapy itself, which has been 
shown to reduce eosinophil and to increase neutrophil 
numbers, by inhibition of neutrophil apoptosis.36

The neutrophilia may represent a continuous influx 
of cells from the bloodstream due to continuous anti-
genic stimulation of the bronchi.37 Several mediators 
linked to neutrophils, including leukotriene (LT)B4, IL-
8, macrophage inflammatory protein-1a and tumour 

FigURe 2. Pathology of severe asthma phenotypes. (A) Early 
onset, eosinophil (+). Inset shows concurrent presence of CD3 
lymphocytes). (B) Late onset, eosinophil (+). Note that the 
eosinophils are highly degranulated. Inset shows absence of 
CD3 lymphocytes. (C) Early onset, eosinophil (-). Lack of obvi-
ous inflammation. (D) Late onset, eosinophil (-). Lack of obvious 
inflammation, thin subepithelial basement membrane (SBM). 
Arrowheads indicate BMK(+) eosinophils. EOS: eosinophils; rbc: 
red blood cells; SM: smooth muscle. (Adapted from ref. 33).
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necrosis factor-a (TNF-a), have been found increased in 
severe asthma.38,39 They induce neutrophil chemotaxis, 
activation and survival, and they up-regulate endothelial 
adhesion molecules. Epidermal growth factor receptor 
(EGFR), a marker of epithelial stress/damage, is increased 
in proportion to disease severity. EGFR expression in the 
bronchial epithelium correlates with IL-8, indicating that 
EGFR can also contribute to this sustained neutrophilic 
inflammation.40,41 The presence of neutrophils is also as-
sociated with an increase in matrix metalloproteinase 9 
(MMP-9) in BAL fluid and tissue (specifically the SBM).42 In 
severe asthma, expression of MMP-9 is poorly inhibited 
by corticosteroids both in vivo in BAL fluid and in vitro in 
BAL cell supernatants.

III. Pauci-inflammatory phenotype
Although there is little doubt that inflammation is 

increased in asthma and correlated with the clinical 
manifestations in many individuals, there is a subgroup 
of patients with severe asthma in whom virtually no in-
flammation (at least of the classic cell types) is evident on 
endobronchial biopsy. Very little is understood about the 
pathogenesis of disease in this group, but a hypothesis for 
this phenotype includes the presence of localized distal 
lung inflammation, or, as in patients with neutrophilic 
inflammation, a totally different, perhaps bronchiolitic 
disease. In support of this hypothesis is the observa-
tion that tissue samples from patients with late-onset 
severe asthma without “classic” inflammation show no 
evidence of the SBM thickening commonly seen in most 
biopsies from patients with asthma.32 It is also possible 
that structural alterations of the lungs have resulted in 
persistent clinical symptoms, but inflammation, in the clas-
sic sense, is no longer present at the time of examination. 
In support of this hypothesis, the studies by Benayoun 
and colleagues43 report that the primary differentiating 
factor between tissue from patients with mild and severe 
asthma was related not to airway inflammation, but to 
an increase in the amount of smooth muscle. Finally, 
there may be a type of inflammation involving “non clas-
sic” inflammatory/asthma cells. In a study of severe oral 
steroid–treated patients with asthma, an increase was 
observed in monocyte/macrophage activation44 and cells 
of the innate immunity process, such as macrophages are 
increasingly being recognised to be important players in 
the different asthma phenotypes.

IV. Phenotype of poor steroid responsiveness
It is likely that absolute steroid resistance rarely oc-

curs, even in severe asthma45. Studies of the phenotype 
of poorly steroid responsive (i.e., resistant) asthma have 
traditionally focussed on the lymphocyte as the target cell 
for the resistant pathways. Phenotypes of severe asthma 
associated with persistent eosinophilic inflammation in 
either early or late-onset disease may represent the more 
classic version of poor steroid responsiveness, where the 
inflammation is not responsive to steroids. In phenotypes 
without persistent eosinophil/lymphocytic inflammation, 
the mechanisms are less clear.

The phenotype of poor steroid responsiveness prob-
ably encompasses many different underlying causes (Table 
1). It is possible that in some cases the inflammation is 
responsive to steroids, but the steroids do not have an 
impact on the structural elements driving the severity. 
Alternatively, a different type of inflammation, as might 
be seen in neutrophilic-associated disease, may not be 
as responsive to steroids as an eosinophil-associated 
process.46

Possibilities for poor steroid responsiveness in this 
group include sequestration of the glucocorticoid receptor 
by high levels of pro-inflammatory mediators, diminished 
binding of the glucocorticoid receptor to the genome, or 
increased levels of an alternatively spliced glucocorticoid 
receptor, which has no direct transcriptional-related 
effects.47,48 Abnormalities in the balance of the histone 
acetylation and deacetylation pathways in asthma, which 
contribute to regulation of inflammatory gene transcrip-
tion, may also play a role.49

A recent study suggested that peripheral blood cells 
from patients with severe asthma had less histone dea-
cetylation activity in response to steroids than those of 
patients with milder asthma, thereby preventing some 
of the anti-inflammatory response to steroids.50

TABLe 1. Causes of steroid resistance

1. Eosinophilic inflammation unresponsive to steroids
a. Lymphocytic process unresponsive to steroids

i. Altered transcription factor binding
ii. Increased glucocorticoid receptor β
iii. Decreased histone deacetylation

b. Eosinophilic processes unresponsive to steroids
i. “Hypereosinophilic” syndrome
ii. Aspirin-sensitive asthma

2. Non typical inflammation
a. Neutrophil predominance
b. Inflammation in small airways

3. Structural changes to airways
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LUng STrUcTUrAL cHAngeS

Airway remodelling may determine the nature and 
extent of airway narrowing and, therefore, the degree 
of the response and the likelihood of a fatal or near-fatal 
event. One of the strongest risk factors for a near-fatal or 
fatal asthma attack is a previous near-fatal event, which 
supports the concept that underlying inflammatory or 
structural changes in the airways, and perhaps, in the lung 
parenchyma, may contribute to perpetuating the risk. It 
is yet to be clarified what the precise changes are, how-
ever, and what is their role in disease severity. Numerous 
lung structures have been implicated, including the SBM, 
epithelium, smooth muscle, nerves, and blood vessels.

Epithelial cell and goblet cell abnormalities, reticular 
basement membrane (RBM) thickening and smooth 
muscle abnormalities are observed in the majority of 
asthma fatalities and in patients with severe asthma 
and all of these changes probably contribute to airway 
narrowing. Increased thickness of the RBM is found in 
the bronchi of individuals who died of status asthmati-
cus and in endobronchial biopsies from living patients 
with severe asthma. Thickening of the RBM in the large 
airways is the structural change which has been most 
extensively studied in asthma, because of the relative 
accessibility of endobronchial biopsy, but its relationship 
to other structural changes deeper in the airway wall or 
to remodelling of more distal airways is presently unclear. 
It has been shown that patients with severe asthma have 
thicker RBM than normal control subjects and subjects 
with milder asthma,16,32 which has been associated with 
persistent eosinophilia and higher expression of TGF-β 
in the submucosa.16,51,52

There is increasing interest in the mechanisms involved 
in the differentiation and repair of the airway epithelium, 
especially as it applies to severe asthma. TGF-β from the 
epithelial cells could stimulate adjacent fibroblasts to 
increase collagen production, thereby increasing the thick-
ness of the RBM.53 When an airway fibroblast is stimulated 
by the combination of TGF-β and a Th2 cytokine, such 
as IL-4 or IL-13, a profound increase in the production of 
eotaxin-1, a potent eosinophil chemoattractant, occurs, 
with an additive effect on the production of pro-collagen 
I.53 Thus, in eosinophilic forms of severe asthma associated 
with increased TGF-β (even in the presence of a modest 
degree of Th2 inflammation), the fibroblast could not only 
contribute to the fibrotic response but also perpetuate 
tissue eosinophilia. Figure 3 depicts possible interac-
tions between eosinophils and other cell types in severe 

asthma that may contribute to fibrosis.54 As discussed 
above, however, not all forms of severe asthma imply 
eosinophilic inflammation. For instance in the study by 
Benayoun and co-workers43 mucosal eosinophilia was 
not found to be related to disease severity, and nor were 
neutrophilia, epithelial damage, or SBM thickness. In 
contrast, the presence of higher numbers of fibroblasts 
and increased airway smooth muscle mass was able to 
distinguish patients with severe persistent asthma from 
patients with milder disease. The amount of smooth muscle 
in the airways of patients with severe asthma appears to 
play a key role, particularly in the context of fatal asthma. 
Patients dying of status asthmaticus were reported to have 
increased smooth muscle mass throughout the airways 
from the largest airways to nearly the smallest.55 In ad-
dition, smooth muscle cells can also contribute to the 
recruitment of inflammatory cells into the bronchi where 
they produce pro-inflammatory cytokines and chemokines 
and expression of leukocyte adhesion molecules.56 Sobonia 
and coworkers57 studied 6 cases of severe allergic asthma 
with persistent airflow obstruction where death had oc-
curred from non-respiratory causes. In contrast to studies 
of fatal cases, increased thickness of the airway smooth 
muscle area was not observed, which suggests that this 
factor may differentiate fatal from severe asthma, but 
further studies comparing airway dimensions in cases of 
clinically severe (but not fatal) asthma with cases of fatal 

FigURe 3. interactions between eosinophils and fibroblasts 
involving transforming growth factor β (TGF β 1 or 2), which 
perpetuate eosinophilia and result in increased deposition 
of collagen. IL: interleukin, TIMPs: tissue inhibitors of matrix 
metalloproteinases.
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asthma would provide better evidence.
Finally, changes in the elastic properties of both the 

airway wall and its parenchymal attachments, such as 
might result from pathological remodelling processes, 
may have dramatic effects on airway narrowing as im-
portant modulators of airway wall stiffness and smooth 
muscle responsiveness. In this context, elastin has been 
shown to be abnormal (decreased or disordered) in 
patients who died of asthma in both the large and small 
airways.58-60 Proteolytic enzymes (MMP-2, MMP-9) that 
alter elastin composition have been reported increased in 
several instances in asthma, particularly in cases of status 
asthmaticus.61,62 Disruption of the alveolar attachments, 
and therefore of the airway–parenchymal tethering, has 
been noted in the small airways of individuals who died 
of status asthmaticus, providing a pathological correlate 
for the physiological findings.58

concLUSIon

Severe asthma remains a disease which is poorly 
understood and frustrating to care for, mainly because 
of its heterogeneity. It appears that the factors leading to 
the development of severe asthma are complex and the 
disease is probably a mixture of various syndromes that 
have differentiating elements, but also share similarities 
at the pathophysiological level. A better understanding 
of the immunological and histopathological phenotypes 
of severe asthma should enhance our ability both to 
understand the pathogenesis of these syndromes and 
to improve the approach to their treatment.

Adequate tissue sampling of the distal lung for the 
evaluation of the outer airway wall, small airways and 
their surrounding parenchyma is still needed in order to 
widen our knowledge about severe asthma phenotypes. 
In addition, imaging studies, performed on patients 
with well phenotyped, genotyped and physiologically 
characterized severe asthma are required for us to better 
link structure with function and genetic susceptibility.
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